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Abstract

The Neugebauer approach to modeling color cmy half-
tones generally has to be modified to correct for the Yu
Nielsen light scattering effect. The most comm
modification involves the Yule–Nielsen n factor. A less
common, but more fundamentally correct modificat
of the Neugebauer model involves a convolution of 
halftone geometry with the point spread function, P
of the paper. The probability model described in the c
rent report is less complex than the PSF convolution
proach but is sti l l  much less empirical than t
Yule–Nielsen n model. The probability model assum
the Neugebauer equations are correct and that the Y
Nielsen effect manifests itself in a variation in the XYZ
tristimulus values of the eight Neugebauer primary c
ors as a function of the amounts of c, m, and y printed.
The model describes these color shifts as a functio
physical parameters of the ink and paper that can
measured independently. The model is based on th
sumption that scattering and absorption probabilities
independent, that the inks obey Beer–Lambert optics,
that ink dots are printed randomly with perfect hold-o
Experimentally, the model is most easily tested by m
suring the shift in the color of the paper between 
halftone dots, and experimental microcolorimetry is p
sented to verify the model.

Background

One of the conceptual advantages of halftoning is
linearity between the fractional area coverage of the
dots, Fk, and the overall reflectance R of the image as
expressed in the Murray–Davies equation, R = Fk Rk + (1
– Fk)Rp, where Rk and Rp are the reflectance factors 
the ink and paper, respectively. In color halftoning t
also means a linearity between c, m, and y dot areas and
the CIE XYZ chromaticity coordinates of the image. Ho
ever experimental measurements typically show
nonlinearity between R and Fk with R being less than
predicted by the Murray–Davies equation. T
nonlinearity between Fk and R is caused by two phenom
ena: (1) physical dot gain in which the actual dot fr
tion is larger than the dot fraction commanded in 
printing process, and (2) the Yule–Nielsen effect in wh
the lateral scatter of light within the paper leads to
increase in the probability of the ink dots absorbing 
light.1 Thus, to describe tone and color reproduction
halftone images, modifications of the Murray–Dav
–
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equation are used. In this report, F will refer to the ac-
tual, measured dot area fraction rather than the frac
commanded by the printer, and a modification of 
Murray–Davies equation that models the Yule–Niel
effect on color halftones will be described.

The earliest and still most commonly used mod
cation of the Murray–Davies equation is the Yule–Niel
equation, with an empirical n factor.1

R F R F Rn
k k

n
p p

n1 1 1= + . (1)

In this expression, Fk and Fp are the area fraction
of the ink dots and the paper between the dots, res
tively, and Fp = 1 – Fk. The Murray–Davies and Yule
Nielsen equations are often extended to describe spe
reflectance in cmy color halftoning.

   R f Ri i
i

( ) ( )λ λ= ∑
=1

8

, (2)

R f Rn
i i

n

i
( ) ( ) .λ λ1 1

1

8
= ∑

=
(3)

The fi are the area fractions of the eight possible 
ors (white, cyan, magenta, yellow, red, green, blue,
black) formed by overlap between the printed ink a
fractions c, m, and y. The Ri(λ) are the reflection spectr
of the eight colors. By knowing or assuming the geo
etry of overlap between ink dots, the color fraction m
be determined from the ink fractions, fi = f(c,m,y). The
most common assumption regarding dot overlap is 
dots are printed randomly, which leads to the so-ca
Demichel equations [f1 =(1 – c)(1 – m)(1 – y), through f8

= c, m, y].2 Models for deterministic dot placement ha
also been published.3

By integration, the CIE chromaticity coordinat
may be determined.

XYZ R xyzP d= ∫ ( ) ( )λ λ λ , (4)

where XYZ represents the X, Y, or Z chromaticity value
and xyz  represents the corresponding x, y, or z color
matching function. The value P(l) is the spectral powe
distribution of the light used to view the image. By a
plying Eq. 4 to Eq. 2 we have what is often called 
Neugebauer equation for tristimulus values,2

    XYZ f XYZi i
n

i
= ⋅∑

=

1

1

8

, (5)

where XYZi represents a tristimulus value for the co
region i of the halftone.

The empirical modification for R(λ) may also be
Chapter V—Tone Reproduction and Gamuts—489
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used to calculate tristimulus values. However, Eq. 6 
not follow from application of Eq. 4 to Eq. 3.

XYZ f XYZn
i i

n

i

1 1

1

8
= ∑

=
. (6)

Nevertheless, Eq. 6 is occasionally used as an
pirical modification of Eq. 5. Because n is only an em
pirical factor, no reason exists not to use Eq. 6 if it prov
a useful description of a given halftone system.4

Work in this laboratory has explored an alterna
modification to the Murray–Davies equation in wh
Ri and Rp are not constants but are described as func
of the dot area fraction Rk(Fk) and Rp(Fp).5

R = FkRk(Fk) + FpRp(Fp). (7)

Experimentally it has been well shown that bothRk

and Rp decrease as Fk increases.5 Both empirical and theo
retical models have been reported for describing Rk and
Rp versus Fk for monochrome halftones.5–7

The Probability Functions

Equation 7 may be expanded to describe cmy halftone
color. Equation 2 is the appropriate expansion of E
if we consider the eight Ri(λ) spectra to be functions 
the color fractions fi as well as functions of waveleng
λ. Then, integration gives the tristimulus values of 
color image. The problem is to describe the way in w
the eight Ri(λ) of Eq. 2 depend on the eight fi. The ap-
proach taken in this report is to describe probability fu
tions for the lateral scattering of light in the paper 
then to describe the way in which the eight Ri spectra
depend on the probability functions.

We begin by defining the probability function Pji.
This is the probability that if a photon enters the pa
in region j, of area fraction fj, it will reemerge after sca
tering in region i, of area fraction fi. In other words, if N
photons enter the paper in region i, then Pji is the frac-
tion of these N photons that scatters and emerges in
gion i, provided no light is absorbed by the paper.
account for light absorption, we assume absorption
scattering probabilities are independent so that the 
number of photons from region j that emerges in regio
i  is the product RgPji .

Consider the monochrome case with region j = 1
defined as the region between the dots and region i  = 2
the region of the paper containing dots. The probab
P11 is the probability of light emerging from the regi
between the dots after entering between the dots
conventional clustered dot halftones this probability 
experimentally shown to be well described by the 
lowing function7:

     P f f fw w
11 1 1 11 1 1 1 1= − − − − + −[ ]( ) ( ) ( ) , (8)

where f1 is the same thing as Fp in Eq. 7 and w is a factor
related to the scattering of light in paper. The w factor
has been shown to be related to the scattering opti
the paper,

       w e
Akp= − −

1
ν , (9)

where A is a constant characteristic of the halftone 
490—Recent Progress in Digital Halftoning II
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ometry, kp is a constant proportional to the mean d
tance light travels in paper before reemerging as refle
light, and n is the halftone dot frequency. A thorou
discussion of the terms in Eq. 9 was reported elsewh7

Equation 8 may be generalized to describe the p
ability Pjj that light that enters an area of the paper mar
j will emerge from the paper at area j, with fj as the area
fraction.

    P f f fjj j j
w

j
w= − − − − + −[ ]1 1 1 1 1( ) ( ) ( ) . (10)

Similarly, an extension of previous work on mon
chrome FM halftones leads8 to a somewhat different ex
pression for Pjj,

     P w fjj j
B= − −( )1 1 , (11)

where w is again given by Eq. 9 but with n defined as 
inverse of the dot diameter. The B factor is an empirical facto
related to the particular geometry of the FM halftone.8

In addition to the Pjj  probabilities, there are also a
of the Pji probabilities, as illustrated for the cy two-ink
case in Fig. 1. If we have functions to describe all of
Pji, then for a three-color cmy halftone we would have
an 8 × 8 matrix of probability functions Pji with the Pjj

functions on the diagonal of the matrix. Similarly,
monochrome halftone would be described with a 2 × 2
matrix of probability functions. As will be shown be
low, the Pji  can be related to the Pjj. First, however, we
examine how these probabilities can be used to ca
late color reproduction in the halftone.
From Probability to Reflectance

The two-ink case illustrated in Fig. 1, shows h
the incident irradiance, I0 = watts/area, is divided amon
the areas, fi, of the halftone image. Photons I0 fi strike the
image in region number i. The light that then enters th
paper in this region is I0 fiTi, where Ti is the Beer–Lam-
bert transmittance of the ink layer over region i. Note
that Ti = 0 for i = 1 (the paper between the dots) and t
T2 = Tcyan, T3 = Tcyan Tyellow, etc. Then, the number of ph
tons from region i that emerge from region j is I0 fiTiPji.
For example, as illustrated in Fig. 1, the number of p
tons that strike Region 4 (the cyan-color region) a

M
C

I3

1234

Iof1Iof2Iof4 Iof3

P13P23
P33P43

paper

ink

Figure 1. For a two-color (cyan, magenta) halftone, the light
flected back from the blue region has four origins as a resu
the Yule–Nielsen effect.
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eventually emerge under Region 3 is given by the p
uct (I0T4RgP43). The total amount of scattered light th
reaches Dot 3 is the sum of these expressions fo
gions 1, 2, and 4. Then the light passes through D
and is attenuated by T3. Similarly, the general expre
sion for the photon irradiance emerging from any di
is as follows:

I I R T T P fi g i
J

J ji j= ∑0 ( ). (12)

The reflectance of the dot is the ratio of the li
emerging from the dot, I i, to the light entering the dot,I0

fi. Thus, dividing Eq. 12 by I0 fi gives the following ex
pression for the reflectance of dot i.

R R T T P
f

fi g i J ji
j

iJ
=







∑ . (13)

The spectral designation (l) has been dropped to
plify the notation, but Ri, Rg, and all the Tj are functions o
wavelength. The spectral Ri may then be used in Eq. 2
determine the overall spectral reflectance of the half
image, and then Eq. 5 can be used to calculate the tristim
values of the image. The only unknown in the model
description of the off-diagonal probabilities Pji.

The Off Diagonal Probabilities

Everything required to model halftone color is n
known except the off-diagonal probabilities Pji. Intu-
itively, the Pji must relate to the Pjj  and to the color frac
tions fj and fi. We can derive this relationship by assum
the independence of the scattering probabilities Pji and
the absorption probabilities Ti and Rg. We also assum
the paper is sufficiently thick that loss of light throu
the back of the paper is negligible. Under these co
tions, the photons that enter Region 3 of Fig. 1 must e
tually emerge in one of the four regions.

P13 + P23 + P33 + P43 = 1. (14)

This expression is a special case of Eq. 13 for a 
ink halftone and for Rg = Ti = Tj = 1. If we further assum
that the dots are randomly placed on the paper so
the probability of light from Region k emerging in som
other Region i ≠ k is proportional to the area fractioni.
Thus, for any two regions i  ≠ k and j ≠ k, we may write
the following:

       Pki/Pkj = fi/fj. (15)

For example P31 = P31(f1/f1), P32 = P31(f2/f1), and P34 =
P31(f4/f1). Combining these with Eq. 14 gives the followin

P f f P f f P P f f31 1 1 31 2 1 31 31 4 1 1( ) + ( ) + + ( ) = (16)

Note that Eq. 15 does not apply to P33, but only to i
≠ j . Then we recognizing f1 + f2 + f4 = 1 – f3 and solve Eq
16 for the off-diagonal P31.

P P
f

f
i

31 33
3

1
1

= −( )
−






. (17)

We may generalize this expression for any off
agonal term, i ≠ j.
d-

e-
 3
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1 fjji jj
i= −( ) −







1 . (18)

We now have a sufficient set of functions to mo
color halftones.

The Model Recipe

To apply these probability functions to calculate the XYZ
tristimulus values of a color halftone given the c, m, and
y ink fractions delivered by a printer, the following ste
are taken: (Note c, m, and y are the actual areas not t
areas commanded by the printer. Physical dot gain i
considered here.)

Step 1. Measure the transmittance spectra of the indivi
inks, Tcyan, Tmagenta, and Tyellow. Assume the Beer
Lambert law and determine the transmittance s
tra Ti of the eight colors. Also measure the refl
tion spectrum of the paper, Rg.

Step 2. Begin with the ink combination (c,m,y) and cal-
culate the eight color fractions, f1 through f8. For
randomly placed ink dots, the Demichel equati
may be used. Otherwise dot geometry mus
modeled, as illustrated for dot-on-dot halftones
scribed subsequently.

Step 3. Use Eq. 10 to calculate the eight diagonal pro
bilities, Pjj , for a traditional clustered dot halfton
Eq. 11 may be used with an FM, stochastic t
of halftone. The parameters w and B may be taken
as arbitrary constants to fit the model to data.
ternatively, w and B may be measured indep
dently as described previously.8

Step 4. Use Eq. 18 to calculate the off-diagonal pr
abilities.

Step 5. Use Eq. 13 to calculate the reflection spectr
the eight colors.

Step 6. Use Eq. 2 to calculate the reflection spectr
of the overall halftone image.

Step 7. Use Eq. 5 and the power spectrum of the i
mination light, P(l), to calculate the XYZ
tristimulus values of the halftone image.

Testing the Model

Color halftones were generated with an HP 1600C 
jet printer on a high-quality coated sheet to minim
ink penetration and dot gain. Halftones were printed 
an error diffusion algorithm, and dot-on-dot was not u
The dots from the different colors were at 300 dpi 
were randomly placed with respect to each other. A f
amount of magenta (dot fraction m = 0.45) was prin
at different cyan dot fractions (0 < c < 1). No yellow
was printed in this experiment. A microscopic image
the dot pattern was captured with a 2-mm field of v
using a 3-chip color CCD camera and video frame g
ber. The sample was illuminated with an incandes
light source through fiber optics. The resulting light
the sample was measured and found to have the p
distribution P(λ) of CIE Illuminant A. The camera an
optical system had been calibrated to the ink-jet dye
so the rgb images could be translated into XYZ space. In
Chapter V—Tone Reproduction and Gamuts—491
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Figure 2. The X tristimulus value of the paper between the 
(r) and of the overall, mean value of the halftone image (O)
versus the ink area fraction of cyan at magenta = 0.45. Er
diffusion halftone at 300 dpi.
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Figure 3. The Y tristimulus value of the paper between the do
(r) and of the overall, mean value of the halftone image (O)
versus the ink area fraction of cyan at magenta = 0.45. Erro
diffusion halftone at 300 dpi.
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Figure 4. The Z tristimulus value of the paper between the d
(r) and of the overall, mean value of the halftone image O)
versus the ink area fraction of cyan at magenta = 0.45. E
diffusion halftone at 300 dpi.
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Figure 5. The xy chromaticity trajectory with Illuminant A for th
paper between the dots and for the overall image for the varia
cyan, fixed magenta, error diffusion halftone. The gamut of 
printer at maximum c, m, and y inks is shown. The paper ch
maticity (w l) and the spectrum locus are shown.
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addition, gray-level segmentation in the original 
images provided independent measures of the c, m, and
y dot area fractions. Using the color microdensitome
measurements were made of the XYZ tristimulus values
of not only the overall image but of the space betw
the ink dots. The results were plotted as a functio
the cyan dot area fraction c and are shown in Figs. 2, 
and 4. Figure 5 shows the corresponding x,y chromatic-
ity values. The data do not go all the way to the ga
limit because the printer, at a command of 100% 
formed dots with very little dot gain and occupied o
r,

n
f

t
,

90% of the paper area. The model was run over the r
0 < c < 0.9 to agree with the experiment. These exp
ments demonstrate that the color between the dot
indeed, not the color of the unprinted paper but mim
the mean value color of the overall image.

The solid lines in Figs. 2 through 5 were calcula
with the model recipe described above. The trans
tance spectrum of the cyan dye was determined from
reflection spectrum, Rcyan, of a 100% cyan region (m = y =
0) and the function, Tcyan = (Rcyan/Rg)1/2. Spectra for the ma
genta and yellow were similarly determined. The Demichel
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Figure 6. The X tristimulus value of the paper between
dots (O) and of the overall, mean value of the halftone im
(X) versus the ink area fraction of cyan at magenta = 0.4. C
tered dot-on-dot halftone at 53 dpi.
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Figure 7. The Y tristimulus value of the paper between the 
(O) and of the overall, mean value of the halftone image (X)
sus the ink area fraction of cyan at magenta = 0.4. Clustered
on-dot halftone at 53 dpi.
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Figure 8. The Z tristimulus value of the paper between the
(O) and of the overall, mean value of the halftone image (X)
sus the ink area fraction of cyan at magenta = 0.4. Clustered
on-dot halftone at 53 dpi.
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Figure 9. The xy chromaticity trajectory with Illuminant A for th
paper between the dots and for the overall image for the varia
cyan, fixed magenta, clustered dot-on-dot halftone. The gam
the printer at maximum c, m, and y inks is shown. The pa
chromaticity (w l) and the spectrum locus are shown.
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equations were used to determine the color area 
tions fi, and Eq. 11 for FM halftones was used for 
on-diagonal probabilities. The model was fit to the d
by adjusting w and B. Rather than search for a statistic
fit criteria, the authors simply adjusted w and B to achieve
a visually acceptable agreement between the mode
all of the data in Figs. 2 through 5. Values of w = 0.82
and B = 1.2 were used in this calculation and are consis-
tent with independent estimates from earlier work.8,9

A second experiment was performed using the s
inks and a traditional clustered dot halftone. Howev
the clustered dot halftone was printed dot-on-dot ra
than randomly. Figures 6 through 9 show the resu
Again the color of the paper between the dots mim
the color of the halftone image. The solid lines in th
c-

a
l

nd

e
r,
r

s.
s
e

figures were modeled by the recipe above with the 
lowing changes. First, Eq. 10 was used for the diago
probabilities. Second, the Demichel equations were
placed with a geometric calculation for dot-on-dot ha
tones. For the fixed magenta at different levels of cy
the functions in Table I were used. The value of w = 0.80
was found to provide an overall fit, judged visually, 
the data in Figs. 6 through 9.

Discussion

As shown by Engeldrum, the Yule–Nielsen effect ma
fests itself in color halftones as a change in the colo
the paper between the halftone dots as the dot area 
tions change.10,11 The probability model appears to pr
Chapter V—Tone Reproduction and Gamuts—493
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vide a mechanistic rational for this phenomenon. Mo
over, the model rationalizes the overall color of the h
tone image. The printer used in the project employe
default algorithm for gray color removal, and this p
vented experimental testing with more than two of 
three cmy inks. However, the fit with the two color cas
strongly supports the model. This, in turn, indicates 
the Neugebauer Eqs. 2 and 5 are correct descriptio
halftone color reproduction provided the eight refle
tance spectra Ri and the eight sets of tristimulus valu
XYZi are treated as continuous functions of ink fracti
cmy and not as the reflectance spectra and tristim
values of the eight Neugebauer colors printed at 10
coverage. This point is emphasized by integrating 
13 directly to find the eight sets of Neugebau
tristimulus values to use in Eq. 5. Integration leads
the following:

XYZ P XYZ
f

fij ij
j

ij
=









∑

=1

8
. (19)

Note that integration leads to a matrix of 
tristimulus values XYZij. The eight values on the diag
nal XYZjj are the traditional Neugebauer values for 
eight Neugebauer colors printed at 100% coverag2,11

These values may be measured independently. How
the off-diagonal values XYZij are tristimulus values fo
light that passes Dot j, scatters in the paper, and th
passes through Dot i . The XYZij tristimulus values can
not be measured independently.

Unlike the Yule–Nielsen modification to th
Neugebauer equation, the probability model has a d
link with the fundamental optical and geometric charac
istics of the halftone system via Eq. 9. While the proba
ity model is significantly more complex than the tradition
n modified Yule–Nielsen model, it is significantly less co
plex than a convolution model involving the fundamen
probability function PSF of light in the paper. Gustavso12

has demonstrated such a model, and it is fundamen
correct theoretically. However, the current probability mo
is expressed with closed analytical functions and is m
more amenable to modifications for nonideal systems
demonstrated in previous work.9 Moreover, one should b
able to derive the mean level probabilities Pjj from the fun-
damental probability PSF and a knowledge of the geom
etry of the halftone system. Because the PSF of pap
quite difficult to measure experimentally, it is typica
modeled empirically. In the current model, we begin
modeling Pjj empirically. In addition, as demonstrated p
viously,8 it may be easier to measure the Pjj than the PSF
Thus, one experimental approach to measuring PSF
be to measure Pjj with several known dot geometries a
then to calculate PSF.

Appendix

A reviewer of this manuscript correctly pointed out th
Eq. 15 implies an assumption. The assumption is 
the off-diagonal probabilities Pik are proportional to the
494—Recent Progress in Digital Halftoning II
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area fractions fi so that Pik = ak fi, for i ≠ k. If a nonlinear
proportionality actually applies so that Pik = akG(fi) for
some function G, then Eqs. 15 through 18 become mo
complex. While this may certainly be the case, it is 
revealed in the experimental data and the data are
sufficiently noise-free to provide a guide to a more a
vanced estimate of the functional form of Eq. 15. Fo
more rigorous analysis of this probability, the reade
directed to recent theoretical work by Rogers.13–15
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